
This document is for Coventry University students for their own use in completing their
assessed work for this module and should not be passed to third parties or posted on any
website. Any infringements of this rule should be reported to
facultyregistry.eec@coventry.ac.uk.

Faculty of Engineering, Environment and Computing
122COM Introduction to Algorithms

Assignment Brief 2017/18

Module Title
Introduction to Algorithms

Ind/Group Cohort
Sept

Module Code
122COM

Coursework Title (e.g. CWK1)

Retake Cw

Hand out date:
2/4/18

Lecturer
David Crof

Due date:
27/4/18

Estimated Time (hrs): 11 (average)

Word Limit*: N/A

Coursework type:
Code submission

% of Module Mark
60

Submission arrangement online via CUMoodle:
File types and method of recording: Single .zip file containing source code.
Mark and Feedback date: Within 3 weeks of deadline
Mark and Feedback method: Written comments

Module Learning Outcomes Assessed:

1. Write software to solve a range of problems

2. Implement and use simple searching and sorting algorithms

3. Use libraries to extend the functionality of the base language

4. Use basic design and testing strategies

Task and Mark distribution:

1 Introduction

The core of this coursework is a single Abstract Data Type (ADT) that you need to implement

and test.

The coursework should be undertaken individually without collaboration between students.

All code not written by yourself (other than that on the 122COM Moodle/Github page/s) must

be referenced. You are only marked based on the code that you have written. All submissions

will be checked against each other and the internet for possible plagiarism and/or collaboration.

You are still expected to complete Phase Test 1 & 2.

1.1 Support

If you are unclear on the specifications you should contact the module leader or other member

This document is for Coventry University students for their own use in completing their
assessed work for this module and should not be passed to third parties or posted on any
website. Any infringements of this rule should be reported to
facultyregistry.eec@coventry.ac.uk.

of teaching staff to ask for clarification. The programming support centre

(https://gitlab.com/coventry-university/programming-support-lab/wikis/home) runs during

semesters 1, 2 & 3 and is able to assist with resit coursework if you are having programming

difficulties.

1.2 Submitting

You should submit a single zip file to Moodle with a filename in the following format:

 STUDENTNUMBER.zip.

For example if your student ID was 1234567 then you should submit a zip file named

1234567.zip.

You will be penalised if you do not follow these instructions.

2 Task specification

You should be familiar with the language requirements from the 122COM lab sessions but to

reiterate:

 Information Technology for Business and Multimedia Computing students are allowed to

complete the task in either C++14 or Python3.

 All other students must complete the task in C++14.

2.1 Abstract Data Type (ADT)

You are expected to design and implement an ADT representing an unfair queue.

A queue is an ADT which follows the same rules as real queues, new items are added to the

back of the queue (pushing) and old items are removed from the front of the queue (popping).

However, in your unfair queue when you push an lowercase letter onto the queue it should

push its way past all of the uppercase letters (because it’s smaller and can sneak past). Lower-

case letters should only sneak their way past uppercase letters, they can’t push their way past

other lowercase letters.

This document is for Coventry University students for their own use in completing their
assessed work for this module and should not be passed to third parties or posted on any
website. Any infringements of this rule should be reported to
facultyregistry.eec@coventry.ac.uk.

Be aware that factors such as sensible variable names, comments, docstrings, use of Object

Oriented Programming (OOP), functional decomposition, error handling etc will all be consid-

ered when marking your ADT implementation.

2.1.1 Requirements

 Your ADT should be called UnfairQueue (note the capitalisation).

 As a minimum it needs to have front, pop, push and size methods.

◦ You can add any additional methods that you want/need.

 It needs to be able to store at least 100 items.

 The items in the unfair queue must be single characters.

◦ I.e. if you are coding in Python they will be single character strings.

◦ I.e. if you are coding in C++ they will be char variables.

◦ Anything that isn’t a lowercase letter (i.e. a to z) is considered to be uppercase.

 Use of classes, global variables, raw pointers, pure functions and other indications of

good/bad programming practices will taken into account when marking.

2.1.2 Rules regarding use of existing code

 You cannot use any existing queue or priority queue library or implementation.

◦ E.g. if you are coding in Python you may not use the Queue, heapq,

collections.deque or any other queue modules.

◦ E.g. if you are coding in C++ you may not use the queue, priority_queue or any

◦ other queue library in the STL, boost, EASTL or any other set of libraries.

 You can use code that has been provided for you in the labs and lectures for inspiration,

you should not copy it directly.

◦ Remember you are only marked on the code that you write yourself.

2.2 Testing

In order to prove that your unfair set implementation works as it should you will need to supply

evidence of testing.

If you are testing by hand you must supply a list of test cases, the expected result for each test

and the result that you got when you ran that test. Be aware that factors such as sensible test

names, comments, test coverage, edge cases etc. will all be considered when marking your

tests.

If you are using automated unit tests then you must supply the unit test code which will be run

during marking to see the results. Be aware that factors such as sensible test names, comments,

docstrings, test coverage, edge cases, use of an automated test library etc will all be considered

when marking your tests.

2.3 Using the ADT

Once you have written your unfair queue implementation and have tested that it works you

need to write a program that uses it.

This document is for Coventry University students for their own use in completing their
assessed work for this module and should not be passed to third parties or posted on any
website. Any infringements of this rule should be reported to
facultyregistry.eec@coventry.ac.uk.

You will be provided with an SQLite3 database file containing details of famous films. Your

program will be expected to get a year as an input. The program should then get a list of all

films from that year.

For each film add the letters in the title to an UnfairQueue and then print the UnfairQueue

and the director’s name.

For example, if the year was 1927 then the films would be “Easy Virtue”, “Drop Kick, The”

and “My Best Girl” and the program should print:

EVasy irtue = Hitchcock, Alfred
DKTrop ick, he = Webb, Millard
MBGy est irl = Taylor, Samd

3 Marking

30% A bug free unfair queue implementation which meets all the requirements specified in

section 2.1

20% A comprehensive testing strategy.

10% Automated unit tests.

20% A bug free program that access the SQLite3 database and meets all the requirements

specified in section 2.3.

20% Code elegance and professionalism

Notes:
1. You are expected to use the CUHarvard referencing format. For support and advice on how this

students can contact Centre for Academic Writing (CAW).

2. Please notify your registry course support team and module leader for disability support.

3. Any student requiring an extension or deferral should follow the university process as outlined

here.

4. The University cannot take responsibility for any coursework lost or corrupted on disks, laptops

or personal computer. Students should therefore regularly back-up any work and are advised to

save it on the University system.

5. If there are technical or performance issues that prevent students submitting coursework

through the online coursework submission system on the day of a coursework deadline, an

appropriate extension to the coursework submission deadline will be agreed. This extension will

normally be 24 hours or the next working day if the deadline falls on a Friday or over the

weekend period. This will be communicated via email and as a CUMoodle announcement.

https://share.coventry.ac.uk/students/Registry/Pages/Deferrals-and-Extension.aspx
http://www.coventry.ac.uk/study-at-coventry/student-support/academic-support/centre-for-academic-writing/?theme=main
https://curve.coventry.ac.uk/open/file/bdfb947c-9d43-48d3-8ec8-f511682e1dd1/1/The%20CU%20Guide%20to%20Referencing%20in%20Harvard%20Style.pdf

This document is for Coventry University students for their own use in completing their assessed work for this module and should not be passed to third
parties or posted on any website. Any infringements of this rule should be reported to facultyregistry.eec@coventry.ac.uk.

Marking Rubric

	122COM Introduction to Algorithms

